

The Maine Maritime Museum main exhibit building housed many ship models along with numerable artifacts related to the history of ship building and vessel activity located in the geographical area of Maine. Most of the historical shipping activity involved the era when clipper ships and sail powered vessels were in use.

The displays were outstanding

Pages CONTENT

1 Cover
2 On The Cover, Content, Statement.
3 Calendar of Events, Officers \& Bd. of Directors, Meetings SOP.
4 President's Message
5-6 January Meeting: Annual Business Mtg. (postponed from December)
7-8 February Meeting: Dan Crowley shop
9-10 March Quarterly Meeting: Field trip to Maine Maritime Museum.
11-12 Leg Carvng Jig (reprint from "Pins \& Tales" E-mail quarterly magazine)
13 Adjustable Saw Horse, design.

STATEMENT: All Woodworkers, from beginners \& hobbyists to professionals, are invited to join the Guild of Maine Woodworkers where individuals can meet and share their knowledge and skills. Monthly meetings include demonstrations, tool discussions and guest speakers as well as the popular "show $\&$ tell" when members show off their woodworking products, tools or gadgets. Meetings rotate around member's shops. Maybe you will gain an idea for your shop. If you need help on a project, the Guiild is the place to be.

January	Annual Business Meeting (postponed from Dec. snowstorm.)			(done)
February	Guild meeting	Dan Crowley	Gloucester	(done)
March	Quarterly Meeting	Maine maritime	Museum	(done)
April 18	Guild Meeting	Susan Chandler	Freeport	
May 15	Guild Meeting	Randy Mayse	Buxton	
June 10	Quarterly Meeting	Virginian Boat	Bath	
July \& Aug.	2 Skill Wd'wk. Sessions		Baldwin	
Sept. 9	Quarterly Annual Picnic	Barbara White	Yarmouth	
Oct. 16	Guild Meeting	Rolf Dries	Windham	
Nov. 20	Guild Meeting	Ron Boes	Windham	
Dec. 9	Quarterly Business Mtg.	Wes Sunderland	Baldwin	
Guild Meet	ngs-3rd Tuesday evenin	g: Guild Quarter	Meetings-2nd S	turday

GUILD OFFICERS:	(subject to change at business meeting)		
President:	Wes Sunderland	Secretary:	Randy Mayse
Vice Pres:	Jim Hanscom	Treasurer:	Pat Sunderland
BOARD of DIRECTORS:	(Date indicates year end of term)		
$\underline{\mathbf{2 0 2 3}}$	$\underline{\mathbf{2 0 2 4}}$	$\underline{\mathbf{2 0 2 5}}$	
Susan Chandler	$\underline{\text { Frank Southard }}$	Ron Boes	
Bob Kearney	Barbara White	Rolf Dries	
Wes Sunderland	Bill Lewis	Randy Mayse	

GUILD MEETING SOP: The Guild conducts meetings and activities on a monthly schedule.
Regular monthly meetings are January, February, April, May, October, and November.
Quarterly meetings are March, June, September, and December.
Regular meetings are held the third Tuesday of the month starting at 6:30pm.
Quarterly meetings are held on the second Saturday of the month beginning usually at 10am.
Summer months of July \& Aug. have no meetings, however "skill sessions" are randomly held.
One week prior to a scheduled meeting, an E-mail reminder is sent to include directions.
Regular meetings provide a meal (food) for all members and a convenience to those coming directly from a work day.

PRESIDENT'S MESSAGE

Thru the years l've had individuals state that they were "getting into woodworking" (as a hobby) and didn't know what tools they first needed and to begin to buy. Where do I begin !!!

A few questions. 1. What do you think you will want to make ? 2. Do you plan to use motorized tools or do you prefer hand tool work ? The 2nd question has little bearing on tool selection if you are just beginning and do not have much knowledge of tool use. Let's begin with motor tools.

The core of a woodwork shop is a table saw. The selection is a wide variety of makes and models and a wide choice of price. Often cost is a deciding factor. As important cost may be, working features over-rule. If you start with a lesser than desirable model, you may be buying a second table saw years down the path n wood creation. Match your needs with tool features. The middle of the road is a $10^{\prime \prime}$ diameter blade saw with a $1-1 / 2$ to 3 horsepower motor. Shop and learn.

Other motorized tools may be jointer, power miter cutoff saw, bandsaw, and drill press. Jointers are used to straighten board edges, especially for glue joints, as well as a few other operations. The longer the table length the better the tool. A miter cutoff saw is very handy. Bandsaws cut curved work, very handy if you plan to do that type of work. The distance from blade to arm is important. 14 " clearance is a common choice. Drill press can be very handy but not high on the demand list. The above discussion covers 5 basic stationary motor tools.

Motor hand tools are belt sander, orbital sander, router, and possibly jig saw. Again, a wide selection and a wide cost range. Don't buy all things immediately, buy as the need arises. But do a lot of shopping and get familiar with the availability of these tools and their operating features.

Hand tools are another totally different situation. Only a few are needed to assist with power tools. There are marking tools, tri-square, ruler, and perhaps a compass. If you begin to like doing hand work, then the tool selection expands rapidly. This takes time to grow into so only look for a while and don't buy immediately.

Because tool availability presents a large assortment of options, shopping and becoming knowledgeable with what's out there particularly features and prices is what you need to learn.

As a personal experience and example, and having had up to 10 employees on the payroll, I've owned as many as 11 table saws. They ranged from old time small cast iron saws out of the 1940's to a few large saws. The largest saw was a double arbor, $7-1 / 2 \mathrm{HP}, 14$ " blade saw weighing about 1800 lbs . There is a big difference between hobby tools and industrial tools, that includes costs.

Shop and know what tools are about, and ask questions with experienced woodworkers.

Members gathered at meeting.
The usual December business meeting was changed to January due to snow storm conditions

Stig Ammentorp (left) with his show \& tell what seems to be a weathervane, but is a candle holder.

Shown below

Page \#5

Show \& Tell:

Wes demonstrating the operation of his recently acquired "Foley Automatic Saw Filer". Just set and push the button

Jo Elichaa with a cutting board.

Steve Smith with a decorative box and the tied bow is all wood.

Wes Demo an easy and clever method clean paint away from the soft glazing at window pane edge.

Also Demo with a technique to flatten the surface of a large plank using a hand plane.

This meeting shop was only with solar electric power and limited light fixtures. Most of Dan's work is Timber Framing with the use of daylight.

3 photos: The gathering of members

DEMO: Mortise cutting on timber with the use of a power chain saw mortising machine. A fast machine.

Page \#7

Art Fahie: Decorative board as a monopoly game.

The DOVE-TALE MAINE MARITIME MUSEUM - Bath, Me. Vol. \#15, 1st. Quarter This was a Saturday Quarterly meeting, March 11th, and a sunny winter day.

Too many to name. 14 members attended (including the photographer). 3rd from right a head. The winter schedule had only the main museum building open. No personnel to
 tend the open displays in the field.

Many of the displays reflected the way shipping vessels were back in history.

This is a 6 mast schooner (clipper ship) This shows the volume of sail cloth material required for wind power. These ships had NO auxiliary motor power when there was a lack of wind.

This ship displays the required rigging employed to steady the masts and hold the wind forces. Just imagine, rope manufacturing was not a motorized mechanical task back in history. These displays were magnificent.

Above: One of many models showing the yard where ships were constructed.

Left: Photo of a ships hull in construction. It is hard to imagine the physical man power to hue and shape all the rib members of a ships hull. These were massive beams.

Above: Birch bark canoe. This particular display showed the detailed construction of all the parts coming together to form a water tight canoe.

A guess for the weight of this canon fire power, 2 ton $=\mathbf{4 0 0 0} \mathrm{lbs}$. AND there may be 12 or more on a warship That's about $4000 \times 12=48,000 \mathrm{lbs}$.

LEG HOLDING JIG вy: Wes Sunderland (Article from SAPFM quarterly newsletter)

When you participate in a woodworking class, the exposure and learning process is always rewarding. For some, you are enlightened with a variety of technical woodworking skills. For others that have woodwork exposure, the process verifies that you
use skills correctly and as a bonus gain a few new tricks of the trade. Everyone benefits.

Several years past, I participated in a chair fabricating class at Connecticut Valley School of Woodworking. Instructor Micky Callahan introduced his method of holding a chair leg while carving the claw and ball foot. With the multitude of possibilities for holding, his use of a wood parallel clamp presented a better positioning for the carver to approach the leg from both sides or the foot end. It had all the requirements, simple and effective.

Here is a typical wood parallel clamp with a square cutout as a diamond shape. The leg post is tightened in the cutout and projects away from the bench edge. Both clamp post jaws are secured in the bench vise.

Returning to my shop, I gave this holding clamp some thought. The leg cantilevered a distance from the clamp jaw and excessive carving forces may place a strain on the leg post. Was a supplement addition to the clamp possible to gain more stability to the leg as carving proceeded ? The need was to add an extending supporting arm to share the forces to the cantilevered leg. I imagined a design in my mind and proceeded to fabricate a support arm to include adjustments for
the leg as it changed positions in a 360 degree rotation.

The jig clamp with leg is positioned outward. Both jig posts are secured in the vise. The carver may move around the leg thus providing access for caving in three positions.

Shown is a clamp jig rotated with one post held in the vise. The posts are unequal in length. The leg is positioned close to the bench edge providing easy reach to the carving chisels.

Larger $1 / 2$ inch bolts were employed not for strength but for the wing nuts to be a larger size for easy finger tightening. Metal rods for extended arms seemed appropriate to provide the cantilevered strength required. After completion and some use, these $1 / 2$ inch rods were more than adequate. The vertical adjustment to the supporting yoke at the leg's ankle seldom needed adjustment, only for the first placement of the leg when initiating carving. As the leg is rotated, the ankle remains within the center line with the post and there is no change in vertical height. When the first leg is set in position, you're ready to proceed.

An all wood clamp devise needed to be designed so others may easily fabricate the clamp with cantilevered arm. The only metal is the $1 / 2$ inch bolts with wing nuts. Any hard wood is appropriate.

These are the all-wood parts for the leg clamp jig. Dado cuts assist to locate the extended arm in two positions, a short length for chair legs and a longer length for table legs. The yoke is adjustable in the slotted hole. A wood wrench is available to tighten the wing nuts.

The 2 inch square vise posts are the strength of the fixture. If the leg post is 2 inches square, cut the clamping diamond square at $13 / 4$ square so it will tighten and grip the leg post. Two long bolts are used to work the vertical posts as a parallel clamp. The lower bolt has a fixed position similar as a leg vise at the bottom of a bench leg, adjustable to various clamping thickness. The horizontal supporting arm needs only to be $3 / 4$ inch stock. The design is dimensioned for both chair legs, 17 inches long, and for table legs, 30 inches long. Customize this for your requirement. The yoke rest is adjustable thru slotted holes with a wing nut bolt to hold a position. The sliding wedge stabilizes the yoke. Adjustment in height is seldom made.

This shows the jig held by one post with the foot in an upward position. The distance from the clamp to the yoke is about 11 inches. For table legs, the distance is about 22 inches.

Clearly shown is the jig with its long leg in the vise and the shorter jig leg on the bench top. The claw and ball foot is rotated downward with the ankle resting in the yoke. Both ankle and leg post are in the same center line and the yoke needed no height adjustment.

This leg holding jig, applicable for many different foot forms other than a claw and ball foot, gives stability to working the leg. For a 17 inch chair leg the stabilizing arm may not be needed except when carving gets aggressive while removing a quantity of stock shaping the ball. Most foot carving is gentle, delicate cutting action and extra support would not be needed. However with the longer table leg of 30 inches, the horizontal arm should be applied. It is asking a lot for the vertical post clamp to endure forces cantilevered out 24 to 28 inches from the post. This clamping jig is my favorite. The variety of standing positions is great for carving, and the chisels close at bench edge is convenient. Try it, you'll like it.

Saw horses are generally used in pairs. Shown are $\mathbf{2}$ small saw horses appropriate for shop use. The construction is easy and all table saw woodwork. The feature of an adjustable top support surface makes these horses so useful and adaptable to a variety of shop applications.

The dimensions of this saw horse is arbitrary. $23^{\prime \prime}$ ht. allows 4 legs to be cut from an 8 ft . board, and 32" long allows 3 lengths cut from an 8 ft . board. With a total height of 24 " (lowered top), a 2 ft. cabinet on its back will be $48^{\prime \prime} h t$.
$18^{\prime \prime}$ wide base is adequate for a short $24^{\prime \prime}$ height saw horse. Keep width no wider than $\mathbf{2 8 \prime \prime}$ for a larger saw horse to allow moving thru a doorway.

Pegs are placed thru the holed to
 adjust the top height. Bolts (not shown) hold the $\mathbf{2}$ halves together and squeeze to hold in position the vertical adjustment. Enjoy crafting your new saw horses.

